Receptive field properties of the macaque second somatosensory cortex: representation of orientation on different finger pads.

نویسندگان

  • Paul J Fitzgerald
  • John W Lane
  • Pramodsingh H Thakur
  • Steven S Hsiao
چکیده

Orientation tuning has been studied extensively in the visual system, but little is known about it in the somatosensory system. Here we investigate tuning in the second somatosensory (SII) region using a motorized stimulator that presented a small oriented bar to the 12 finger pads of digits 2-5 (D2-D5) of the macaque monkey. A subset (23%; n = 218) of the 928 SII region neurons [the same 928 neurons studied by Fitzgerald et al. (2004, 2006)] exhibited tuning, and most of these were tuned on one or two finger pads. All eight 22.5 degrees separated orientations were represented as the preferred orientation of multiple neurons, although not necessarily in equal numbers. A measure of bandwidth indicated that tuning in the SII region is sharp and is similar to the tuning observed in visual cortical areas. In addition, two-dimensional Gaussians that were fit to the tuning curves had very high r2 values, indicating that most tuning curves are both unimodal and symmetrical with respect to their preferred orientation. Most tuned neurons had additional untuned pads, although the responsiveness of these pads tended to be less than the responsiveness of tuned pads. Neurons with multiple tuned pads tended to have similar preferred orientations on their tuned pads, which can be interpreted as evidence for integration of information across fingers or as a form of positional invariance. Finally, comparison of the tuning properties showed that there are small but significant differences between the posterior, central, and anterior fields of the SII region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptive field properties of the macaque second somatosensory cortex: nonlinear mechanisms underlying the representation of orientation within a finger pad.

We investigate the position invariant receptive field properties of neurons in the macaque second somatosensory (SII) cortical region. Previously we reported that many SII region neurons show orientation tuning in the center of multiple finger pads of the hand and further that the tuning is similar on different pads, which can be interpreted as position invariance. Here we study the receptive f...

متن کامل

Receptive field (RF) properties of the macaque second somatosensory cortex: RF size, shape, and somatotopic organization.

The detailed structure of multidigit receptive fields (RFs) in somatosensory cortical areas such as the SII region has not been investigated previously using systematically controlled stimuli. Recently (Fitzgerald et al., 2004), we showed that the SII region comprises three adjoining fields: posterior, central, and anterior. Here we characterize the RF structures of the 928 neurons that were re...

متن کامل

Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats

Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...

متن کامل

Topographic generalization of tactile perceptual learning.

Perceptual learning can improve our sensory abilities. Understanding its underlying mechanisms, in particular, when perceptual learning generalizes, has become a focus of research and controversy. Specifically, there is little consensus regarding the extent to which tactile perceptual learning generalizes across fingers. We measured tactile orientation discrimination abilities on 4 fingers (ind...

متن کامل

Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates.

In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 24  شماره 

صفحات  -

تاریخ انتشار 2006